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Abstract
In earlier work we reported the discovery of phase transitions in BiFeO3 evidenced by
divergences in the magnon light-scattering cross-sections at 140 and 201 K (Singh et al 2008
J. Phys.: Condens. Matter 20 252203) and fitted these intensity data to critical exponents
α = 0.06 and α′ = 0.10 (Scott et al 2008 J. Phys.: Condens. Matter 20 322203), under the
assumption that the transitions are strongly magnetoelastic (Redfern et al 2008 at press) and
couple to strain divergences through the Pippard relationship (Pippard 1956 Phil. Mag. 1 473).
In the present paper we extend those criticality studies to examine the magnon linewidths,
which exhibit critical slowing down (and hence linewidth narrowing) of spin fluctuations. The
linewidth data near the two transitions are qualitatively different and we cannot reliably extract
a critical exponent ν, although the mean field value ν = 1/2 gives a good fit near the lower
transition.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Near second-order phase transitions there is generally a
slowing down of fluctuations in the order parameter [1].
In ferroelectric transitions the spatial regions of correlated
polarization (domains) increase in size as the Curie
temperature Tc is approached from above and reverse
polarization more slowly. This is usually characterized [2] by a
power-law dependence of fluctuation time τ (T ) = bt−ν upon
reduced temperature t = (T − Tc)/Tc. The correlation length
exponent is ν = 1/2 in mean field, ν = 1 in the Ornstein–
Zernike model or the [2D] Ising model, and ν = 0.64–0.70 for
[3D] Ising or Heisenberg models [3]. Fourier transforming this
in terms of a spectral linewidth �(T ), one has for T > Tc

�(T ) = �0tν (1a)

and below Tc,
�(T ) = �′

0tν′
(1b)

(primes on exponents conventionally denote the ordered phase
T < Tc).

In fluids it is usual to define a dynamical structure factor
that is proportional to the total scattering intensity to describe

such phenomena; and such structure factors have the property
that they are proportional to the density–density correlation
function. In the hydrodynamic limit in which the wavevector q
of the fluctuation is much smaller than the inverse correlation
length κ , the linewidth � in scattering experiments (Raman
or neutron) is proportional to q2. This is also true for spin–
spin correlations in magnets [4]. Thus in the present work
the magnon linewidths at a given temperature are not constants
but instead �0(q) may be a strong function of scattering angle
and hence momentum transfer q; this geometrical effect is
described in detail, including significant birefringence effects,
by Scott [5]. Although originally derived for fluid problems,
this q-dependent linewidth result also holds extremely well for
spin diffusion in semiconductor spin-flip light scattering [4, 6]
and for phason-like fluctuations in quasielastic light scattering
in incommensurate insulators [7, 8] both of which have very
strong q2-dependences.

Rather recently unexpected phase transitions in bismuth
ferrite were discovered near 140.3 and 201.0 K [9, 10],
interpreted as spin–reorientation transitions analogous to those
in orthoferrites such as ErFeO3. (Bismuth ferrite is an
extremely trendy material with >700 publications on it in
the past five years, owing primarily to is ferroelectric–
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Figure 1. Graph of measured magnon linewidth squared versus
temperature for BiFeO3 transition near 140 K. The exponent ν = 1/2
fitted to the curve is not adjustable and is derived assuming the
intrinsic width is added in quadrature to the instrumental linewidth.
Other fitted parameters are Tc = T2 = 140.0 ± 0.2 K;
d�′/dT = 0.07 ± 0.01 cm−1 K−1; d�/dT = 0.03 ± 0.01 cm−1 K−1;
instrumental resolution width = 3.2 ± 0.1 cm−1. Two fits are shown
above Tc, including a different number of data points.

ferromagnetic properties at room temperature.) The critical
exponents describing the cross-section divergences of magnon
light scattering in this material near these temperatures were
fitted, using the Pippard relationship [11], as α′ = 0.11 ±
0.02(=1/8?) and α = ca 0.06 ± 0.02(=1/16?); the
use of the Pippard relationship was compatible with strong
magnetoelastic coupling, demonstrated separately by Redfern
et al [12]. The values 1/8 and 1/16 are mentioned because
at one time they were considered to be the best theoretical
estimates for the d = 3 Ising model [1b], but unfortunately
in the present context it was α = 1/8 and α′ = 1/16 rather
than the reverse shown in [10]; in fact it is one of Griffiths’
thermodynamic assumptions that α � α′, which disagrees with
our earlier data fitting.

In the present paper we would like to try to fit the linewidth
narrowing reported near these magnetoelastic phase transition
temperatures, and in particular, see if they are mean field
with ν = 1/2, or if some other theoretical model (such as
Ornstein–Zernike or [3D] Ising) is more applicable. We also
try to examine any q-dependence of linewidth by varying
the scattering angle; however, this is extremely difficult with
opaque samples or micro-Raman instrumentation, because
they normally require backscattering geometries.

In these procedures it is important to keep in mind
the Levanyuk–Ginzburg criterion [11], which relates the
temperature region over which true critical (fluctuation-
dominated) exponents may be expected. This varies as
the inverse sixth power of the interaction length and hence
is expected to be within <1.0 K of the actual transition
temperature. At temperatures farther removed, mean field
theory is likely to prevail, since the fluctuations are small; i.e.,
far below the transition temperature [〈φ2〉 − 〈φ〉2]/〈φ2〉 �
1, where φ is the order parameter (in our case, a spin-axis
tilt). By comparison the present studies are 1.0–40 K from
the transition temperatures and thus apt to be compatible
with mean field theory independent of the detailed statistical
mechanics involved.

Figure 2. As in figure 1 but for the spin reorientation transition near
201 K. Here the exponent is much less than that at 140 K; in the
figure it is constrained to be ν = ν′ = 1/4 assuming that the
instrumental and intrinsic widths add in quadrature. These data seem
qualitatively different from those in figure 1. Other fitted parameters
are Tc = T1 = 202.4 ± 0.5 K; d�′/dT = d�/dT ; instrumental
resolution width = 3.0 ± 0.2 cm−1.

2. Experimental details

Both Cazayous et al [13] and Singh et al [9, 10] reported
magnon linewidth narrowing near 140 and 200 K. Initially
Cazayous et al found only one anomaly at 140 K [14]
and nothing at 200 K, but later studies [13] revealed both
transitions with concomitant narrowing. Cazayous et al did not
initially [14] interpret these phenomena as phase transitions,
but later borrowed without attribution the interpretation of
Singh et al [9, 10, 15] that these were spin–reorientation
transitions, as in orthoferrites, and this seems now to be the
accepted point of view.

The data taken in our laboratory were obtained using a
T64000 spectrometer (Horiba Inc.) equipped with a triple-
grating monochromator and a Coherent Innova 90 C Ar+-laser
with excitation wavelength of 514.5 nm in a backscattering
geometry appropriate for opaque materials. Temperature
control was good to ±0.1 K over the time required to measure
a spectrum, but absolute temperature is probably accurate to
only ±0.5 K, due to sample heating from the laser. The spectral
resolution was typically about 1 cm−1. The narrowest magnon
linewidth we measured under such resolution was 1.6 cm−1.
The data sets in figures 1 and 2 are wider (ca 3 cm−1), but
this is due to the measurement of different polarizations for the
scattered light, as explained in section 3.1 below.

2.1. Linewidth deconvolution procedure

Over the temperature range studied the apparent magnon
linewidths varied from full widths at half maximum of about
4 cm−1 to slightly less than 2 cm−1. In order to obtain
accurate magnon linewidths it is necessary to deconvolute the
intrinsic width from the spectral resolution. This is not a
completely trivial undertaking. Usually the intrinsic linewidth
is approximately Lorentzian but the instrumental response is
more nearly Gaussian. This problem was considered carefully
many years ago by Worlock and Fleury [16–18], and we
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follow their guidelines. Simply put, the question is whether
intrinsic and instrumental linewidths add linearly or as squares.
Worlock and Fleury found that the instrumental width and
intrinsic linewidth added approximately in quadrature, not
linearly. The net result is that there is a systematic uncertainty
in our quoted values that is somewhat greater than the random
statistical error. In order to facilitate the least squares fit to
the correlation exponent ν, it was very useful to require the
transition temperatures to be the same for data both above
and below the transition and thereby to simultaneously fit all
the data near each transition; this is tantamount to requiring
a second-order transition. If Tc is allowed to be a different
free variable for data above and below, as would be the case
for a first-order transition, then ν and Tc become more highly
correlated in the least squares fitting.

For deconvolution in quadrature one has

�2(T ) = �2
0 + B2t2ν, (2a)

which can be expanded as

�(T ) = �0[1+ (B2/�2
0)t

2ν]1/2 = �0[1+ (B2/2�2
0)t

2ν +· · ·].
(2b)

Note from equation (2b) that the exponent characterizing
�(T ) near the transition temperature is 2ν and not ν. Thus
a linear dependence very near the transition temperatures will
actually characterize ν = 1/2 (mean field). Unfortunately the
numerical value extracted for ν in this way depends critically
upon the exact deconvolution scheme employed, which is one
reason we cannot do a least squares fit to ν from existing data.
The usual least squares routines result in large uncertainties for
ν and high correlations among the fitted parameters, which are
not independent; therefore what we do instead is to show in
figures 1 and 2 that the mean field value is merely compatible
with the data.

3. Interpretation of data

As shown in figures 1 and 2, the linewidth data near the two
transitions are not qualitatively similar: Those data near 201 K
are symmetric above and below the transition temperature
and exhibit marked curvature when linewidth is plotted versus
temperature. This may relate to the fact that the transition
near 201 K has much greater strain coupling than that at
140 K [12]. We note in addition that the magnon linewidth
is not T -independent outside of this temperature range; near
230 K there is the onset of a splitting between the zero-field-
cooled susceptibility and the field-cooled susceptibility, which
has been interpreted as the beginning of spin-glass behavior
discussed below. Simultaneously fitting linewidths both above
and below the transition temperature yielded T1 = 202.3 ±
0.3 K, which agrees within a two-standard-deviation error with
our value determined earlier from cross-section divergence of
201.0 ± 0.8 K. However, for the lower transition near 140 K
the linewidth narrowing is nearly linear with temperature both
above and below the transition and hence a least squares fits
of the data to equation (1) yielded for this phase transition
ν = ν ′ = 0.42 ± 0.08, assuming quadrature linewidth-
resolution convolution (a simpler linear deconvolution yields

larger values). Within experimental uncertainty these values
satisfy the mean field prediction of ν ′ = ν = 1/2. This may
be compatible with our earlier conclusion that the transitions
are magnetoelastic [10]. Strain is usually long-range and
unscreened, and so mean field results are not unreasonable
a priori. It is also compatible with the fitting of the critical
exponents α; in our fittings we found that the assumption of
logarithmic divergences (equivalent to α = 0, which occurs
in mean field and more explicitly as logarithmic in [2D] Ising
models) gave approximately as good a fit as did power laws
with exponents α or α′ = 0.05–0.11.

It is interesting to note that the coefficients �0 and �′
0 (not

exponents) of linewidth versus temperature above and below
T2 = 140.3 K in equations (1a) and (1b) differ by almost
precisely a factor of 2.0 (larger below). This is reminiscent of
the behavior of reciprocal dielectric constant near second-order
ferroelectric transition temperatures, which often also have a
difference of 2.0 in slope (theoretically predicted if strain is
absent). Note that according to [12] the transition at 201 K is
dominated by strain, whereas that at 140 K is relatively strain-
free, in accord with this suggestion.

As a more general and probably more important point,
the linewidth narrowing shows qualitatively that these are real
phase transitions. Alternative models involving defects can
indeed create purely dynamic anomalies that are not true phase
transitions, such as oxygen vacancy effects [19], and many
such anelastic effects due to impurities or defects are well
known at low temperatures. A good example relevant to the
present study in the temperature range near 200 K in oxides is
that due to oxygen relaxation in the high-Tc superconductor
YBCO [20]. These are often studied via internal friction.
However, none of these defect or impurity mechanisms can
cause magnon linewidth narrowing near specific temperatures.

Maximilien Cazayous kindly provided numerical magnon
linewidth data to us from his experiments [13]. His data points
have similar widths as ours, but they are rather sparse as a
function of temperature and hence do not permit evaluation of
critical exponents. We tried to superpose them on our data, but
they were run with different spectral slit widths and geometries,
and incorporating them into our figures would therefore have
involved adjustable parameters.

3.1. Linewidth dependence upon scattering angle and
birefringence

Any quantitative q-dependence of the linewidths reported here
will have to await further study. The micro-Raman technique
we employed on these opaque samples did not permit sufficient
intensity for quantitative work except at scattering angles near
180◦. Larger specimens might permit 45◦ or 90◦ scattering
studies, as well as grazing incidence, in the near future; and
thin specimens might allow near-forward scattering. Typically
one can vary q by an order of magnitude with such experiments
in transparent materials [5–8].

The wavevector q probed in light scattering is given (for
‘extraordinary’ incident light polarized along the polar axis and
collected ‘ordinary’ light polarized orthogonal to that axis) by

q2 = [ωL(ne−n0)+ωn0]2+2ωL(ωL−ω)nen0(1−cos 	) (3)
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where ωL and ω are the radial frequencies of the incident
laser light and of the magnon; ne and n0, the extraordinary
and ordinary indices of refraction of the specimen; and 	,
the scattering angle. Wavevector (momentum) conservation
requires that since the wavevector of incident and scattered
light are each approximately K = ωLn, with ωL = 2π ×
20 486 cm−1 (488.0 nm blue laser light) and n = 2.62, then
q = 2.1×105 cm−1 for 90◦ angle scattering but 3.0×104 cm−1

for 45◦ scattering and a few ×103 cm−1 for small angles. Note
that the sign of the first term (ne − n0) can be reversed by
reversing both incident and scattered light polarizations (e.g.,
xz and zx polarizabilities), so that q can also be varied without
changing angle. If the first term in equation (3) is negligible,
due to the negative sign of (ne − n0), then the linewidth will
vary very nearly as q2; whereas if it is positive (or zero, with
both incident and scattered light having the same polarization),
the linewidth will be more independent of q . In BiFeO3 we
know that (ne − n0) = −0.13 at wavelengths of ca 550 nm
is negative and unusually large [5c]. In qualitative agreement
with this, we find that rotating the polarizers changes the
magnon linewidths at a given temperature in our experiments
by approximately a factor of 2, typically from 3.2 to 1.6 cm−1.

Although the existing linewidth data do not include
enough scattering angles to afford close comparisons with
this theory, it is provided to alert other investigators that
comparisons of linewidths will generally not be possible
unless scattering angles and birefringence effects are identical.
The birefringence effects measured in our preliminary studies
suggest that equation (3) is involved.

3.2. Thermodynamic inequalities

Certain relationships are well known among the critical
exponents at any continuous phase transition. These are
thermodynamically exact as inequalities [21] and are satisfied
as equalities under the assumptions of scaling theory. Some of
these involve only the exponents α and α′ determined in our
earlier work together with values of ν ′ and ν determined in
the present paper. Our earlier results [10] for α and α′ were
very near the fractional values 1/8 and 1/16 respectively often
invoked [1] for [3D] Ising models.

The Josephson inequality [22] expressed as a hyper-
scaling equality below and above Tc

dν ′ = 2 − α′ (4)

dν = 2 − α (5)

(where the dimensionality of the system is d) is satisfied for
our values within their experimental uncertainties, although
the small values of α and α′ imply for d = 3 non-mean-
field values of ν and ν ′ of approximately 0.63–0.65. Note
that this Josephson (in)equality is also compatible with mean
field if that is taken as having d = 4 marginal dimension (for
which ν = 1/2 and α = 0). Therefore in the present case
the mean field approximation (α = α′ = 0 or logarithmic
and ν = 1/2) cannot be ruled out (recall that a logarithmic
divergence fitted the cross-sections I (T ) nearly as well [10]
as did α = 0.06, which is always true for very small α � 1

since in that case dI/dT is nearly the same for I (T ) = A log t
as for I (T ) = At−α). We note parenthetically that the values
given here do however rule out the [2D] Ising model, which
has α = 0 (logarithmic), close to that observed, but ν = 1.
Defect models [23] also fail utterly, giving α > 1 and ν < 0.

Relatively few other thermodynamic inequalities involve
both ν and α. However, one that involves α is

dγ ′ = (2 − η)(2 − α′) (6)

(which is obtained by combining a Fisher inequality [24] and
the Rushbrooke inequality [25]); more pertinent is

(2 − η)ν = γ, (7)

which is a second Fisher inequality [24].
Note that the relationship equation (6) above Tc

explicitly involves the dimensionality of the system, whereas
equation (7) below Tc does not. These relations could
be tested for the spin reorientation transitions in BiFeO3

if the isothermal magnetic susceptibility could be measured
precisely, giving γ and γ ′; the pair correlation exponent η is
small (0.03–0.04 in [3D] Ising or Heisenberg; zero classically)
and hence negligible to a first approximation. The exponent β

characterizing the order parameter near the Néel temperature
(TN = ca 643 K) is known to be approximately 0.43 from
birefringence [5c, 26] and 0.37 from Mossbauer hyperfine
splittings [27], but β is unknown near the spin reorientation
transitions, and γ is unknown near TN .

In the approximation that η = 0 (or η � 2), one also has
from the Buckingham–Gunton inequality [24]

dν = 2(β + ν) or equivalently (d − 2)ν = 2β, (8)

which could prove useful with additional data on β near 140
or 201 K (if d = 2 the approximation η � 2 leading to
equation (8) fails and hence instead β = η/2 = 1/8 for the
[2D] Ising model).

4. Conclusions

Critical narrowing been evaluated from magnon light scattering
linewidths near the spin reorientation transitions in bismuth
ferrite at 140.3 and 201 K. However, instrumental response and
other technical issues prevent us from evaluating reliably the
critical correlation length exponents ν and ν ′. For temperatures
a few degrees from the 140 K transition they are compatible
with a mean field model with ν = ν ′ = 1/2, but even this
conclusion numerically is dependent upon the deconvolution
procedure to extract linewidths from instrumental resolution.
These mean field values are also reasonably compatible with
our recent evaluations of α and α′ as �1. Although these
results are not sufficient to establish a statistical mechanical
model of the transitions (Ising or Heisenberg in two or three
dimensions or possibly mean field), they do show real phase
transitions, not dynamic effects due to defects, with real critical
slowing down of spin fluctuations.
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4.1. A long-range spin glass?

Further more precise data and quantitative modeling would
be interesting because spin-glass behavior in BiFeO3 is
also observed in this temperature regime [28], and the
conventional wisdom [29] is that magnetic spin glasses in
acentric ferroelectric materials cannot be Ising-like. An
Almeida–Thouless AT-line will be shown for this system in
a separate publication [30], which varies as predicted with
applied magnetic field as H 2/3; this further implies that it
cannot be a short-range Ising spin glass [31–33] but may be
mean field [34, 35], in agreement with the present suggestions.
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